Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570480

ABSTRACT

This work reports on the synthesis of nine materials containing Cu, Ag, Au, and Ag/Cu nanoparticles (NPs) deposited on magnetite particles coated with polydopamine (PDA). Ag NPs were deposited on two PDA@Fe3O4 supports differing in the thickness of the PDA film. The film thickness was adjusted to impart a textural porosity to the material. During synthesis, Ag(I) was reduced with ascorbic acid (HA), photochemically, or with NaBH4, whereas Au(III), with HA, with the PDA cathecol groups, or NaBH4. For the material characterization, TGA, XRD, SEM, EDX, TEM, STEM-HAADF, and DLS were used. The catalytic activity towards reduction of 4-, 3- and 2-nitrophenol was tested and correlated with the synthesis method, film thickness, metal particle size and NO2 group position. An evaluation of the recyclability of the materials was carried out. In general, the catalysts prepared by using soft reducing agents and/or thin PDA films were the most active, while the materials reduced with NaBH4 remained unchanged longer in the reactor. The activity varied in the direction Au > Ag > Cu. However, the Ag-based materials showed a higher recyclability than those based on gold. It is worth noting that the Cu-containing catalyst, the most environmentally friendly, was as active as the best Ag-based catalyst.

2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769075

ABSTRACT

The main cause of subretinal neovascularisation in wet age-related macular degeneration (AMD) is an abnormal expression in the retinal pigment epithelium (RPE) of the vascular endothelial growth factor (VEGF). Current approaches for the treatment of AMD present considerable issues that could be overcome by encapsulating anti-VEGF drugs in suitable nanocarriers, thus providing better penetration, higher retention times, and sustained release. In this work, the ability of large pore mesoporous silica nanoparticles (LP-MSNs) to transport and protect nucleic acid molecules is exploited to develop an innovative LP-MSN-based nanosystem for the topical administration of anti-VEGF siRNA molecules to RPE cells. siRNA is loaded into LP-MSN mesopores, while the external surface of the nanodevices is functionalised with polyethylenimine (PEI) chains that allow the controlled release of siRNA and promote endosomal escape to facilitate cytosolic delivery of the cargo. The successful results obtained for VEGF silencing in ARPE-19 RPE cells demonstrate that the designed nanodevice is suitable as an siRNA transporter.


Subject(s)
Nanoparticles , Vascular Endothelial Growth Factor A , RNA, Small Interfering/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Silicon Dioxide/metabolism , Retinal Pigment Epithelium/metabolism
3.
Nanomaterials (Basel) ; 12(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234632

ABSTRACT

The development of nanomaterials that mimic the activity of enzymes is a topic of interest, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel nanocomposite of MnOx needles covered with SiO2 porous material. The material was prepared in one pot with a two-step procedure. The material was characterized by EDX, SEM, TEM, XRD, nitrogen adsorption-desorption isotherms, and XPS. The synthesis protocol took advantage of the atrane method, favoring the nucleation and initial growth of manganese oxide needles that remained embedded and homogeneously dispersed in a mesoporous silica matrix. The final composite had a high concentration of Mn (Si/Mn molar ratio of ca. 1). The nanozyme presented bimodal porosity: intraparticle and interparticle association with the surfactant micelles and the gaps between silica particles and MnOx needles, respectively. The porosity favored the migration of the reagent to the surface of the catalytic MnOx. The nanozyme showed very efficient SOD and catalase activities, thus improving other materials previously described. The kinetics were studied in detail, and the reaction mechanisms were proposed. It was shown that silica does not play an innocent role in the case of catalase activity, increasing the reaction rate.

4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293142

ABSTRACT

Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin-ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.


Subject(s)
Anti-Infective Agents , Colorectal Neoplasms , Hyperthermia, Induced , Nanoparticles , Humans , Drug Carriers/chemistry , Ofloxacin , Porosity , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Drug Liberation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Delivery Systems
5.
J Control Release ; 337: 14-26, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34265332

ABSTRACT

Acute lung injury (ALI) is a critical inflammatory syndrome, characterized by increased diffuse inflammation and severe lung damage, which represents a clinical concern due to the high morbidity and mortality in critical patients. In last years, there has been a need to develop more effective treatments for ALI, and targeted drug delivery to inflamed lungs has become an attractive research field. Here, we present a nanodevice based on mesoporous silica nanoparticles loaded with dexamethasone (a glucocorticoid extensively used for ALI treatment) and capped with a peptide that targets the TNFR1 receptor expressed in pro-inflammatory macrophages (TNFR-Dex-MSNs) and avoids cargo leakage. TNFR-Dex-MSNs nanoparticles are preferentially internalized by pro-inflammatory macrophages, which overexpressed the TNFR1 receptor, with the subsequent cargo release upon the enzymatic hydrolysis of the capping peptide in lysosomes. Moreover, TNFR-Dex-MSNs are able to reduce the levels of TNF-α and IL-1ß cytokines in activated pro-inflammatory M1 macrophages. The anti-inflammatory effect of TNFR-Dex-MSNs is also tested in an in vivo ALI mice model. The administered nanodevice (intravenously by tail vein injection) accumulated in the injured lungs and the controlled dexamethasone release reduces markedly the inflammatory response (TNF-α IL-6 and IL-1ß levels). The attenuation in lung damage, after treatment with TNFR-Dex-MSNs, is also confirmed by histopathological studies. Besides, the targeted-lung dexamethasone delivery results in a decrease of dexamethasone derived side-effects, suggesting that targeted nanoparticles can be used for therapy in ALI and could help to overcome the clinical limitations of current treatments.


Subject(s)
Acute Lung Injury , Nanoparticles , Acute Lung Injury/drug therapy , Animals , Dexamethasone , Humans , Lung , Mice , Silicon Dioxide
6.
J Control Release ; 323: 421-430, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32371265

ABSTRACT

The characteristics and electromechanical properties of conductive polymers together to their biocompatibility have boosted their application as a suitable tool in regenerative medicine and tissue engineering. However, conducting polymers as drug release materials are far from being ideal. A possibility to overcome this drawback is to combine conducting polymers with on-command delivery particles with inherent high-loading capacity. In this scenario, we report here the preparation of conduction polymers containing gated mesoporous silica nanoparticles (MSN) loaded with a cargo that is delivered on command by electro-chemical stimuli increasing the potential use of conducting polymers as controlled delivery systems. MSNs are loaded with Rhodamine B (Rh B), anchored to the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)], functionalized with a bipyridinium derivative and pores are capped with heparin (P3) by electrostatic interactions. P3 releases the entrapped cargo after the application of -640 mV voltage versus the saturated calomel electrode (SCE). Pore opening in the nanoparticles and dye delivery is ascribed to both (i) the reduction of the grafted bipyridinium derivative and (ii) the polarization of the conducting polymer electrode to negative potentials that induce detachment of positively charged heparin from the surface of the nanoparticles. Biocompatibility and cargo release studies were carried out in HeLa cells cultures.


Subject(s)
Nanoparticles , Silicon Dioxide , Bridged Bicyclo Compounds, Heterocyclic , HeLa Cells , Humans , Polymers , Porosity
7.
Angew Chem Int Ed Engl ; 59(35): 15152-15156, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32416002

ABSTRACT

In vivo detection of cellular senescence is accomplished by using mesoporous silica nanoparticles loaded with the NIR-FDA approved Nile blue (NB) dye and capped with a galactohexasaccharide (S3). NB emission at 672 nm is highly quenched inside S3, yet a remarkable emission enhancement is observed upon cap hydrolysis in the presence of ß-galactosidase and dye release. The efficacy of the probe to detect cellular senescence is tested in vitro in melanoma SK-Mel-103 and breast cancer 4T1 cells and in vivo in palbociclib-treated BALB/cByJ mice bearing breast cancer tumor.


Subject(s)
Cellular Senescence/immunology , Fluorescent Dyes/therapeutic use , Animals , Female , Humans , Mice , Oxazines
8.
Chemistry ; 25(36): 8471-8478, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31012155

ABSTRACT

Janus gold nanostar-mesoporous silica nanoparticle (AuNSt-MSNP) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule (5), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-ß-cyclodextrin supramolecular gatekeepers (N 1). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.


Subject(s)
Drug Carriers/chemistry , Gold/chemistry , Infrared Rays , Nanostructures/chemistry , Silicon Dioxide/chemistry , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/pharmacology , Humans , Hyperthermia, Induced , Microscopy, Confocal , Nanostructures/toxicity , Porosity
9.
J Food Sci ; 83(8): 2140-2147, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29979465

ABSTRACT

The objective of this work was on the one hand to assess the antibacterial activity of amines anchored to the external surface of mesoporous silica particles against Listeria monocytogenes in comparison with the same dose of free amines as well. It was also our aim to elucidate the mechanism of action of the new antimicrobial device. The suitability of silica nanoparticles to anchor, concentrate and improve the antimicrobial power of polyamines against L. monocytogenes has been demonstrated in a saline solution and in a food matrix. Moreover, through microscope observations it has been possible to determine that the attractive binding forces between the positive amine corona on the surface of nanoparticles and the negatively charged bacteria membrane provoke a disruption of the cell membrane. The surface concentration of amines on the surface of the nanoparticles is so effective that immobilized-amines were 100 times more effective in killing L. monocytogenes bacteria than the same amount of free polyamines. This novel approach for the creation of antimicrobial nanodevices opens the possibility to put in value the antimicrobial power of natural molecules that have been discarded because of its low antimicrobial power. PRACTICAL APPLICATION: Consumers demand for high-quality products, free from chemical preservatives, with an extended shelf-life. In this study, a really powerful antimicrobial agent based on a nanomaterial functionalized with a non-antimicrobial organic molecule was developed as a proof of concept. Following this approach it could be possible to develop a new generation of natural and removable antimicrobials based on their anchoring to functional surfaces for food, agricultural or medical purposes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Nanotechnology/methods , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Food Microbiology , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Structure-Activity Relationship
10.
Sensors (Basel) ; 17(9)2017 Sep 16.
Article in English | MEDLINE | ID: mdl-28926950

ABSTRACT

Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the covalent attachment of 2,2',4,4',4″-pentamethoxy triphenyl methanol to a mesoporous material which further is included in a nitro resin to obtain a colourless composite. The response of this composite to diverse acid solutions was tested showing the appearance of an intense purple colour (with a colour difference higher than 160) that can be monitored by the naked eye or could be easily digitised to feed an instrumental sensor. Reversibility and resistance to washing cycles were studied with positive results. Finally, the response of the sensing composite to acid vapours was assayed, observing a colour change similar to that found in solution.

11.
Food Chem ; 233: 228-236, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28530570

ABSTRACT

The antimicrobial activity of essential oils components (EOCs) is well-known. However, their high volatility and powerful aroma limit their application in the formulation of a wide range of food products. In this context, the antimicrobial activity of carvacrol, eugenol, thymol and vanillin grafted onto the surface of three silica supports with different morphologies, textural properties and chemical reactivities (fumed silica, amorphous silica and MCM-41) was evaluated herein. Materials characterization revealed a good immobilization yield and all the devices showed a micro-scale particle size. Sensory evaluation revealed that sensory perception of EOCs decreases after covalent immobilization. Moreover, immobilization greatly enhanced the antimicrobial activity of the essential oil components against Listeria innocua and Escherichia coli compared to free components. The incorporation of EOCs immobilized on silica particles into pasteurized milk inoculated with L. innocua demonstrated their effectiveness not only for in vitro conditions, but also in a real food system.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Monoterpenes , Oils, Volatile , Silicon Dioxide , Thymol
12.
Nat Commun ; 8: 15511, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28556828

ABSTRACT

'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.

13.
Chem Commun (Camb) ; 53(25): 3559-3562, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28287228

ABSTRACT

Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).

14.
ACS Appl Mater Interfaces ; 9(13): 11332-11336, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28220694

ABSTRACT

Organic-inorganic hybrid nanomaterials offer extremely valuable tools for monitoring many types of analytes in solution. Within this framework, aptamer-based nanomaterials for heavy metal detection are still very scarce. Herein, a novel sensing nanoprobe for the selective and sensitive detection of As(III) based on the combination of aptamers with mesoporous silica nanoparticles has been developed. The efficiency of the sensor is demonstrated in environmental conditions, showing a great potential in As(III) monitoring assays.

15.
Chemistry ; 23(18): 4276-4281, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28220973

ABSTRACT

This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular ß-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies.


Subject(s)
Acetylcholinesterase/metabolism , Drug Carriers/chemistry , Gold/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Acetylcholine/metabolism , Acetylcholinesterase/chemistry , Benzimidazoles/chemistry , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/toxicity , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Hydrolysis , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Porosity , beta-Cyclodextrins/chemistry
16.
Chem Asian J ; 12(7): 775-784, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28169488

ABSTRACT

Two different acetylcholinesterase (AChE)-capped mesoporous silica nanoparticles (MSNs), S1-AChE and S2-AChE, were prepared and characterized. MSNs were loaded with rhodamine B and the external surface was functionalized with either pyridostigmine derivative P1 (to yield solid S1) or neostigmine derivative P2 (to obtain S2). The final capped materials were obtained by coordinating grafted P1 or P2 with AChE's active sites (to give S1-AChE and S2-AChE, respectively). Both materials were able to release rhodamine B in the presence of diisopropylfluorophosphate (DFP) or neostigmine in a concentration-dependent manner via the competitive displacement of AChE through DFP and neostigmine coordination with the AChE's active sites. The responses of S1-AChE and S2-AChE were also tested with other enzyme inhibitors and substrates. These studies suggest that S1-AChE nanoparticles can be used for the selective detection of nerve agent simulant DFP and paraoxon.


Subject(s)
Acetylcholinesterase/chemistry , Enzyme Inhibitors/pharmacology , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Catalytic Domain , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Isoflurophate/chemistry , Isoflurophate/pharmacology , Porosity , Rhodamines/chemistry , Surface Properties
17.
J Control Release ; 248: 60-70, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28069553

ABSTRACT

Acute inflammation is a protective response of the body to harmful stimuli, such as pathogens or damaged cells. However, dysregulated inflammation can cause secondary damage and could thus contribute to the pathophysiology of many diseases. Inflammasomes, the macromolecular complexes responsible for caspase-1 activation, have emerged as key regulators of immune and inflammatory responses. Therefore, modulation of inflammasome activity has become an important therapeutic approach. Here we describe the design of a smart nanodevice that takes advantage of the passive targeting of nanoparticles to macrophages and enhances the therapeutic effect of caspase-1 inhibitor VX-765 in vivo. The functional hybrid systems consisted of MCM-41-based nanoparticles loaded with anti-inflammatory drug VX-765 (S2-P) and capped with poly-L-lysine, which acts as a molecular gate. S2-P activity has been evaluated in cellular and in vivo models of inflammation. The results indicated the potential advantage of using nanodevices to treat inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Caspase Inhibitors/administration & dosage , Dipeptides/administration & dosage , Drug Carriers/chemistry , Inflammasomes/antagonists & inhibitors , Nanoparticles/chemistry , Silicon Dioxide/chemistry , para-Aminobenzoates/administration & dosage , Animals , Anti-Inflammatory Agents/pharmacology , Caspase Inhibitors/pharmacology , Cell Line , Delayed-Action Preparations/chemistry , Dipeptides/pharmacology , Humans , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Nanoparticles/ultrastructure , para-Aminobenzoates/pharmacology
18.
Food Chem ; 218: 471-478, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719938

ABSTRACT

Folic acid (FA) is a synthetic vitamin commonly used for food fortification. However, its vulnerability to processing and storage implies loss of efficiency, which would induce over-fortification by processors to obtain a minimum dose upon consumption. Recent studies have indicated potential adverse effects of FA overdoses, and FA protection during processing and storage could lead to more accurate fortification. In addition, sustained vitamin release after consumption would help improve its metabolism. The objective of this work was to study controlled FA delivery and stability in fruit juices to reduce potential over-fortification risks by using gated mesoporous silica particles (MSPs). The obtained results indicated that FA encapsulation in MSPs significantly improved its stability and contributed to controlled release after consumption by modifying vitamin bioaccessibility. These results confirmed the suitability of MSPs as support for controlled release and protection of bioactive molecules in food matrices in different food production and storage stages.


Subject(s)
Folic Acid/administration & dosage , Food, Fortified , Fruit and Vegetable Juices , Silicon Dioxide/administration & dosage , Drug Stability , Food Storage
19.
Eur J Pharm Biopharm ; 105: 9-17, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27235728

ABSTRACT

Mesoporous silica particles (MSPs) are considered suitable supports to design gated materials for the encapsulation of bioactive molecules. Folates are essential micronutrients which are sensitive to external agents that provoke nutritional deficiencies. Folates encapsulation in MSPs to prevent degradation and to allow their controlled delivery is a promising strategy. Nevertheless, no information exists about the protective effect of MSPs encapsulation to prevent their degradation. In this work, 5-formyltetrahydrofolate (FO) and folic acid (FA) were entrapped in MSPs functionalized with polyamines, which acted as pH-dependent molecular gates. The stability of free and entrapped vitamins after acidic pH, high temperature and light exposure was studied. The results showed the degradation of FO after high temperature and acidic pH, whereas entrapped FO displayed enhanced stability. Free FA was degraded by light, but MSPs stabilized the vitamin. The obtained results point toward the potential use of MSPs as candidates to enhance stability and to improve the bioavailability of functional biomolecules.


Subject(s)
Folic Acid/chemistry , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Light , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Powder Diffraction , Temperature
20.
Food Chem ; 196: 66-75, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593466

ABSTRACT

Although folic acid is essential to numerous bodily functions, recent research indicates that a massive exposition to the vitamin could be a double-edged sword. In this study, the capacity of different caped mesoporous silica particles (i.e. Hollow Silica Shells, MCM-41, SBA-15 and UVM-7) to dose FA during its passage through the gastrointestinal tract has been evaluated. Results confirmed that the four capped materials were capable to hinder the delivery of FA at low pH (i.e. stomach) as well as able to deliver great amounts of the vitamin at neutral pH (i.e. intestine). Nevertheless, the encapsulation efficiency and the deliver kinetics differed among supports. While supports with large pore entrance exhibited an initial fast release, MCM-41, showed a sustained release along the time. This correlation between textural properties and release kinetics for each of the supports reveals the importance of a proper support selection as a strategy to control the delivery of active molecules.


Subject(s)
Folic Acid/chemistry , Silicon Dioxide/chemistry , Nutrition Assessment , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...